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Abstract
Neural network training is inherently sensitive
to initialization and the randomness induced by
stochastic gradient descent. However, it is unclear
to what extent such effects lead to meaningfully
different networks, either in terms of the mod-
els’ weights or the underlying functions that were
learned. In this work, we show that during the
initial “chaotic” phase of training, even extremely
small perturbations reliably causes otherwise iden-
tical training trajectories to diverge—an effect
that diminishes rapidly over training time. We
quantify this divergence through (i) L2 distance
between parameters, (ii) the loss barrier when in-
terpolating between networks, (iii) L2 and barrier
between parameters after permutation alignment,
and (iv) representational similarity between inter-
mediate activations; revealing how perturbations
across different hyperparameter or fine-tuning set-
tings drive training trajectories toward distinct
loss minima. Our findings provide insights into
neural network training stability, with practical
implications for fine-tuning, model merging, and
diversity of model ensembles. 1

1. Introduction
Neural network training is known to be unstable in the sense
that noise can disrupt convergence to a particular minimum
(Frankle et al., 2020a; Wu et al., 2018). This is true even
when considering solutions that perform equally well, since
symmetries and connected minima in the loss landscape
give rise to many different ways for a neural network to
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Figure 1. Left: illustration of the “butterfly effect”: a network θ0
is trained until time t and perturbed by ε early (εt) or later (εt∗ )
in training. Both copies are trained deterministically until T and
their divergence is measured (purple loss basins). Right: barriers
(training cross-entropy loss) at T versus perturbation magnitude
(σ = 1 is the network’s initialization scale). A perturbation of as
little as one weight (leftmost points) reliably causes divergence
when applied early, but not when applied at later t (colors).

parameterize identical or similar functions.

Although training instability affects convergence in general
(Iyer et al., 2023; Jastrzebski et al., 2020), it also prevents
different runs of the same network from consistently reach-
ing one particular solution, which has practical implications
for model merging (Singh & Jaggi, 2020; Ainsworth et al.,
2023) and ensembling. Prior work has categorized train-
ing into chaotic (early) and stable (late) phases (Fort et al.,
2020; Frankle et al., 2020a), but it is not clear if instability
is more a product of noise (e.g. batch noise, data augmenta-
tions, GPU indeterminacy), a network’s current state (e.g.
random vs. pre-trained), or the training procedure itself
(e.g. optimizer and hyperparameter selection). A thorough
understanding of instability should disentangle these fac-
tors, since their influence may vary over training time and
between different settings. Furthermore, depending on the
task, not all of these factors can be controlled— when fine-
tuning a pre-trained model one can vary hyperparameters
but not the initial weights, for instance, while the opposite
may be true when pre-training the same model.

These limitations motivate us to study training stability ab-
sent the effects of noise. Drawing from the dynamical sys-
tems perspective, we consider how much a deterministic
training map diverges when a controlled perturbation is ap-
plied to its initial conditions (i.e. the starting weights of a
network). By selecting initial weights from models trained
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The Butterfly Effect

or fine-tuned for varying durations, we build up a picture
of where in the loss landscape training trajectories tend to
diverge, and how sensitive trajectories are to perturbations
in these regions. Crucially, our approach can quantify stabil-
ity more precisely and for a wider range of models—from
randomly initialized to pre-trained—than was possible in
prior works, which only measured instability to training
noise. Our contributions are as follows:

1. We show that a tiny perturbation of as little as a single
weight early in training causes two otherwise identi-
cally initialized and trained networks to diverge—the
butterfly effect (Figure 2).

2. Conversely, even networks that are stable to training
noise diverge under larger perturbations. This points
towards the possibility of using perturbations during
training or fine-tuning to increase model diversity and
ensembling performance (Figure 3).

3. We find that stability improves under settings includ-
ing wider/shallower networks and increased learning
rate warm-up (among others), and these settings can
be combined to further decrease, but not eliminate,
instability near initialization (Figure 4).

4. While pre-trained networks are orders of magnitude
more stable than randomly initialized networks, stabil-
ity varies greatly between tasks and remarkably, more
pre-training of language models can actually reduce
stability in some cases (Figure 5).

5. Contrary to a dynamical systems perspective, L2 and
barriers (Frankle & Carbin, 2019) do not grow expo-
nentially over training (Figure 6), and although L2 and
barriers are strongly correlated in some cases, this is
not true generally (Figure 7).

2. Related Work
Stability and optimization. Many works have studied the sta-
bility of optimization by asking if neural networks converge
to well-generalizing minima (Cohen et al., 2021; Jastrzeb-
ski et al., 2020; Wu et al., 2018) or converge at all (Iyer
et al., 2023; Jacot et al., 2018; Sohl-Dickstein, 2024). How-
ever, these works do not consider stability relative to any
particular training trajectory.

We focus on the question of whether training from an initial
point tends to follow the same trajectory to a specific “loss
basin”, i.e. a linearly connected, low-loss region of the loss
landscape. Although narrower in scope, this question is
highly relevant for practical contexts such as when using
pre-trained models or conducting fine-tuning. In order to
merge or ensemble models in these contexts, one may not
merely want to find a good solution, but may, for example,
want to converge towards or away from a particular pre-

existing solution in order to improve merge-ability or model
diversity, respectively.

Dynamical system stability. Neural network training has
been studied as a stochastic process (Smith & Le, 2018; Teh
et al., 2016; Redman et al., 2024) and as a dynamical system
(Wu et al., 2018; Jastrzebski et al., 2020; Cohen et al., 2021).
We take the latter view and analyze how small perturbations
to a network’s initial weights evolve over training. This
has two advantages: first, we can differentiate between
instability due to noise vs. instability inherent to training
itself (in the same way that deterministic dynamical systems
exhibit chaos); and second, we can model simpler and larger
(exponential) instabilities, which if present, should dominate
over stochastic effects and make the stochastic perspective
unnecessary (Wu et al., 2018).

Prior works (Wu et al., 2018; Jastrzebski et al., 2020; Cohen
et al., 2021) have considered dynamical systems stability
in terms of whether the L2 distance between a network’s
weights and a fixed minimum will grow over time. Our work
differs in that we evaluate stability relative to a moving tra-
jectory, and we also want to know if networks are diverging
in function (not only in weights). To measure functional
divergence, we use barriers (Frankle et al., 2020a), barri-
ers accounting for neural network permutation symmetries
(Entezari et al., 2022; Ainsworth et al., 2023), and represen-
tational similarity via Angular CKA (Williams et al., 2021).
Although these quantities are not amenable to approxima-
tion by linear dynamical systems, they better capture the
practical differences between networks.

Linear mode connectivity. Barriers (Frankle et al., 2020a;
Neyshabur et al., 2020) are the maximum increase in loss on
a linear path between two networks. Networks with barriers
below some noise threshold are said to exhibit linear mode
connectivity (LMC), which among other useful properties
is a necessary condition for the loss landscape to be locally
convex (Neyshabur et al., 2020, Definition 3.1). Thus, non-
zero barriers indicate that two networks belong to different
convex loss basins (Goodfellow et al., 2015; Huang et al.,
2017; Yunis et al., 2022).2

Note that we do not consider the more general notion of
(non-linear) mode connectivity for several reasons. First, de-
spite being non-convex, neural network training is often un-
derstood in terms of convex optimization. In convex regions
of the loss landscape however, convex optimization behaves
exactly as expected. Similarly, the dynamical systems per-
spective often takes a linear or quadratic approximation of
the loss landscape, which again holds precisely in convex
regions. Practically, merging models by weight averaging
requires linearly connected networks, which is guaranteed if

2Following Entezari et al. (2022); Neyshabur et al. (2020), we
make the extra assumptions needed to assume the converse, i.e.
that networks with zero barrier are in the same loss basin.
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the networks are from the same convex region. Finally, both
theoretical Simsek et al. (2021); Lin et al. (2024) and em-
pirical (Draxler et al., 2018; Garipov et al., 2018; Sonthalia
et al., 2024) works have suggested that most or all minima
may be trivially connected by non-linear paths.

Spawning experiments. Frankle et al. (2020a;b) and Fort
et al. (2020) consider if training is stable to random batch
order and data augmentations (training noise) by spawning
pairs of networks from the same parent, and measuring bar-
riers between them after training. They find that training
becomes stable to training noise after an early period of
instability. Altıntaş et al. (2023) shows that reducing early
training variability by lowering learning rates, increasing
batch sizes, and adding learning rate warm-up further in-
crease stability to training noise, and Singh et al. (2024)
relates stability in barriers to the loss landscape geometry.
These findings align with observations that after an initial
chaotic phase, SGD training trajectories can be approxi-
mated by a linear kernel (Fort et al., 2020).

We adopt the same parent-child spawning experiments
(Frankle et al., 2020a;b; Fort et al., 2020), but we eliminate
all training noise so as to isolate the effects of perturbation
to specific training times. This not only lets us precisely
identify when and how much perturbation causes instability,
but also allows us to do so on both randomly initialized
(chaotic) and pre-trained (stable) networks.

Model averaging. Weight averaging can merge zero-barrier
networks from the same training trajectory (Izmailov et al.,
2018), different runs (Utans, 1996; Wortsman et al., 2021),
or different tasks (Mirzadeh et al., 2021) to improve infer-
ence speed and even performance. Weight averaging is the
basis for more sophisticated model merging strategies (Il-
harco et al., 2023), including those using permutations to
align diverging (Wang et al., 2020) or unrelated (Singh &
Jaggi, 2020) models. Our work indicates the conditions in
which models are stable with respect to barriers, and thus
amenable to weight averaging.

Permutation symmetries. Recent works have shown that
independently initialized networks can converge to linearly
connected basins after accounting for permutation symme-
tries, or different ways to order the neurons in a network
(Entezari et al., 2022; Ainsworth et al., 2023; Benzing et al.,
2022). The permutations aligning two networks are most
unstable early in training (Sharma et al., 2024), suggesting
a connection with training instability. While our work com-
pares identical rather than randomly initialized networks,
we apply weight and activation matching algorithms in the
same manner as Ainsworth et al. (2023) to determine (1) if
training instability causes permutations between networks,
and (2) if undoing these permutations returns diverging tra-
jectories to the same loss basin.

Representational similarity. Representational similarity
compares the intermediate (hidden) outputs of two networks,
and can detect functional differences even when two net-
works have identical performance. Although many methods
exist, we use Angular CKA (Williams et al., 2021) which
we explain and justify in detail in Appendix B.2. In general,
representational similarity methods are invariant to symme-
tries of a network’s outputs, but not of its weights. Thus,
dissimilar representations indicate greater diversity between
networks (which can improve ensembling performance), but
similar representations do not guarantee that two networks
are in the same loss basin (due to weight symmetries), and
thus is not sufficient for weight averaging to succeed.

Fine-tuning stability. Pre-trained models are generally stable
to training noise and converge to the same basin during fine-
tuning (Neyshabur et al., 2020). However, more recent work
has found that this is not always true, as Juneja et al. (2023)
discovered that training noise causes fine-tuning of language
models to converge to different basins. While detrimental to
model merging, this kind of instability can improve model
diversity and thus ensemble performance (Lubana et al.,
2023; Sadrtdinov et al., 2023), even if a single basin has
equivalent diversity (Lion et al., 2024).

Our method enables us to find the threshold between sta-
bility and instability for any fine-tuning setting—even ones
stable to training noise—since we can increase our pertur-
bations to any scale necessary for inducing instability in a
given network. Using our method, we identify differences in
stability between language and vision models, specifically
studying the fine-tuning dynamics of ResNets (He et al.,
2016), ViT (Dosovitskiy et al., 2021), BERT (Devlin et al.,
2019), and OLMo (Groeneveld et al., 2024).

3. Methods
In this section, we define our notion of training stability,
describe the framing for our perturbation experiments, and
finally, define the functional dissimilarity scores and other
quantities we evaluate (barriers, barriers modulo permuta-
tion, and L2 divergence over training time).

3.1. Training Instability

Consider training as the iterative application of a stochastic
training map T : Θ → Θ to the initial parameters θ0 ∈ Θ
of a neural network, so that the network’s parameters after
training are

θT = T T (θ0; ξ) = T ◦ T ◦ ... ◦ T︸ ︷︷ ︸
T times

(θ0; ξ1, ..., ξT ), (1)

where ξ = (ξ1, . . . , ξT ) accounts for all of the stochastic
factors influencing training, such as batch sampling, data
augmentation, and hardware-induced non-determinism. Un-
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less specified, we treat θ as a vector concatenation of a
network’s parameters, and when writing T we omit the
training or test data if it can be inferred from context.

We are interested in the degree to which training is stable,
in the sense that a small perturbation to a network’s ini-
tial weights does not significantly change the network after
training. To describe stability on a continuum, we evaluate
how far θT and θ′T have diverged after training according to
various notions of similarity (Section 3.4). We choose T so
that networks converge to a similar level of training and test
performance (see details in Appendix A).

If we fix a particular ξ, T T describes a dynamical system
whose outcome depends only on the initial parameters θ0.
This perspective has numerous advantages. First, we can
separate the effects of training noise and isolate instability
to the action of T . As dynamical systems can diverge at
exponential rates, dominating over stochastic effects (Wu
et al., 2018), our deterministic experiments also lower bound
the instability of regular stochastic training—i.e.

E [d (T (θ, ξ), T (θ + ε, ξ′))] ≥ E [d (T (θ, ξ), T (θ + ε, ξ))]

for independently sampled noise ξ and ξ′ and a similarity
measure d.

3.2. Spawn-And-Perturb Experiment

Our experiment adapts the parent-child spawning experi-
ment introduced by Frankle et al. (2020a) to the notion of
stability introduced above. The procedure is as follows:

1. Choose an initial state θ0 for a network.

2. Train the network until the perturbation time t, giving
θt = T t(θ0 ; ξ1:t).

3. Make two copies of the network, and perturb one by
adding ε noise with magnitude σ to get θ′t = θt + σε.3

4. Train both original (θt) and perturbed (θ′t) copies with
identical training noise to get θT = T T−t(θt ; ξt:T )
and θ′T = T T−t(θ′t ; ξt:T ).

5. Measure the resulting instability via d (θT , θ
′
T ), where

d : Θ → R+ is a dissimilarity score.

By controlling θ0 and t, we can explore the stability of dif-
ferent points θt in the loss landscape. More specifically, we
select between different trajectories by randomly initializ-
ing θ0 or setting it to a pre-trained checkpoint from another
task. We then vary the perturbation time t to examine how
stability evolves during training. Changing T (by choosing
different model architectures, optimizers, hyperparameters,

3For interpretability, ∥ε∥22 is normalized to match the expected
scale of the network at initialization—see Appendix B.3 for details.

or training tasks) enables comparisons between different
loss landscapes.

To quantify instability, we record the rate at which a dissim-
ilarity score d(θT , θ

′
T ) increases relative to the perturbation

magnitude σ. By sampling perturbations of different sizes
and directions, we can estimate the size and shape of the
local region around θt where T does not tend to cause di-
vergence in terms of d.

Our experiment differs from Frankle et al. (2020a) and Fort
et al. (2020) in that they use independent training noise start-
ing at t, instead of a single perturbation, to induce instability.
While this reflects the stability of ordinary training, our
experiments have two key advantages: we can isolate our
instability analysis to specific parts of the training trajectory
from t to T , and we can also apply much smaller or larger
perturbations than training noise to quantify instability over
a broader scale. In Figure 10, we verify that instability
in our method—i.e. to single perturbations—implies insta-
bility in the methods of Frankle et al. (2020a); Fort et al.
(2020)—i.e. to training noise.

3.3. Perturbations

The stability of a dynamical system around a given point
is direction-dependent. We take this into consideration by
sampling perturbations using two different methods, which
give either a narrow or broad distribution of directions. As
described in Appendix B.3, all noise samples are also nor-
malized to a fixed L2 relative to the network’s initialization
scale.

Batch perturbation. Batch perturbations (Eq. 2) measure
stability along the directions most likely to be explored dur-
ing training, by simulating a single independently sampled
optimization step:

ε̂Batch =
1

n

b∑
i=1

∇ℓ(xi, yi; θt), xi, yi ∼ D, (2)

where ∇ℓ is the gradient of the loss function θt the net-
work weights, and (xi, yi) are b examples sampled from a
minibatch of the training dataset D. Ignoring factors like
momentum, this is equivalent to taking an extra training step
at time t, which is rescaled by the perturbation magnitude σ
instead of the learning rate.

Gaussian perturbation. To measure stability in all di-
rections generally, we use Gaussian perturbations (Eq. 3),
which are scaled versions of the the network’s distribution
at random initialization. For networks initialized with a
Kaiming/He normal distribution (He et al., 2015), Gaussian
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perturbations are sampled as

ε̂Gaussian =
[
ε
(l)
i

]
, ε

(l)
i ∼ N

(
0,

2

nl−1

)
(3)

where ε
(l)
i is the perturbation for the ith weight of layer l,

nl−1 is the number of inputs from the preceding layer (com-
monly called fan-in), and N (0, s) is the normal distribution
with mean 0 and standard deviation s.

Although this is not strictly uniform in all directions (when
considering all of a network’s weights as a single vector),
we choose to match the scale of the network’s initialization
to ensure that perturbations do not disproportionally affect
some layers more than others. Since biases and normaliza-
tion weights have constant initialization, we do not perturb
them in our main experiments.4

3.4. Evaluating Functional Similarity

We use four methods to evaluate the functional similarity
of networks in our spawn-and-perturb experiment: (1) L2

distance in weight space ∥θT − θ′T ∥2, (2) the loss barrier in
Equation (4), (3) the loss barrier after accounting for per-
mutation symmetries using the weight matching algorithm
from (Ainsworth et al., 2023), and (4) the representational
similarity of intermediate layers measured via Angular CKA
(Williams et al., 2021).

L2 divergence. In a linear dynamical system, the L2 di-
vergence ∥θT − θ′T ∥2 can diverge exponentially over time
at a rate of ∥ε∥2eλt, where λ is curvature dependent (see
Appendix B.4 for derivation). To determine whether this
linear approximation holds for neural network training, we
measure L2 distance between parameter vectors over the
course of training to look for exponential growth and to
determine whether L2 divergences are proportional to the
perturbation magnitude σ.

Barriers. Barriers measure the maximum increase in loss
or error along the linear path between weights (Frankle et al.,
2020a; Neyshabur et al., 2020). We measure the training
loss barrier as

sup
α∈(0,1)

ℓ(αθT + (1−α)θ′T )−αℓ(θT )−(1−α)ℓ(θ′T ), (4)

where α interpolates between the networks and ℓ is the loss
function for the training data. Since our work is concerned
with the shape of the loss landscape in which training oc-
curs, we report the cross-entropy loss barrier for training
data (Bce) and after accounting for permutations (BWM

ce )
throughout the main text. Appendix B.1 describes how we
compute barriers in more detail.

4Figure 9 shows results from perturbing biases and normaliza-
tion weights.

Barriers modulo permutation. To consider whether
training instability causes networks to converge to differ-
ent permuted versions of the same loss basin, we apply the
weight and activation matching algorithms from Ainsworth
et al. (2023) to find a permutation of neurons P that approx-
imately minimizes the L2 distance between two networks’
weights or intermediate activations, respectively. To mea-
sure the degree to which θT and θ′T have been permuted
with respect to each other, we record both the barrier be-
tween θT and P [θ′T ], and the fraction of identity elements
(unpermuted neurons) in P .

As the two matching algorithms may not necessarily find
the permutation that best minimizes barriers (i.e. the barrier
modulo permutation), we follow Sharma et al. (2024) in
treating the barrier between θT and P [θ′T ] as an upper bound.
As a result, if the barrier after permuting by P is significantly
reduced, we can say that training instability mainly causes
permutations that do not substantially change a network’s
function. However, if P does not reduce the barrier between
θT and θ′T , this could either mean that training instability
causes networks to learn different functions, or that we have
merely failed to find a permutation that does reduce barriers.

Representational similarity. We also consider whether
networks in our experiments differ in their penultimate rep-
resentations using the angular version of Centered Kernel
Alignment (CKA), a type of representational similarity met-
ric. CKA measures the cross-correlation between two ar-
bitrary representations of the same data (Kornblith et al.,
2019). As defined in Equation (5), we use Angular CKA
with a linear kernel (Williams et al., 2021) to measure the
distance between the outputs of the last residual or attention
block. Since the resulting distance is an angle, 0 indicates
that two networks have perfectly similar representations,
and π/2 indicates that two networks have dissimilar repre-
sentations. Appendix B.2 includes full details.

4. Experiments
Full training details, including hyperparameters and
train/test performance, are listed in Appendix A.

4.1. Early vs. Late Training Instability

We first train residual networks (He et al., 2015) on CIFAR-
10 (Krizhevsky, 2009) with SGD, using standard data aug-
mentations and hyperparameter settings, including a 2%
warm-up period followed by linearly decaying learning rate.

Early perturbations reliably cause large barriers. Fig-
ure 2 shows that training from randomly initialized networks
is highly sensitive to initial conditions, as batch perturba-
tions as small as 0.01% of a network’s weights produce
large barriers. We further reduce the perturbation magnitude
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Figure 2. Stability of ResNet-20 trained on CIFAR-10 with SGD (details in Appendix A). Loss barriers on training data at the end of
training (y-axis) are plotted against perturbation magnitude (x-axis) and perturbation step (color indicates fraction of total training time).
Left: barriers due to batch perturbation. Middle: batch perturbation barriers after accounting for permutations. Right: barriers due to
Gaussian perturbation. For the same plots with log-scaled y-axes, see Figure 27.
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Figure 3. Left: same as Figure 1 but measuring representational similarity distance via Angular CKA (y-axis), defined in Equation (5),
between original and perturbed models after training for various perturbation times (colors) and magnitudes (x-axis). Middle: barriers
versus Angular CKA. Right: test accuracy of an ensemble of the original and perturbed models after training (averaging logits), versus
Angular CKA. See Figures 13 to 15, 21 and 23 for more hyperparameter settings and fine-tuning of ViT and BERT, respectively.

by modifying only a fraction of the weights, finding that
a single perturbed weight is sufficient to cause instability
(Figure 11).

While prior work has shown that training noise near ini-
tialization causes barriers (Fort et al., 2020; Frankle et al.,
2020a), we are the first to show that barriers can occur with
extremely small perturbations concentrated in the first few
steps, as applying the same perturbations as early as 0.5%
of the way through training results in significantly reduced
barriers. We name this initial instability after the “butterfly
effect” in chaotic dynamical systems.

The stability increases over the first 0.5% of training time
is well within the 2% warm-up period we use, and only
very large perturbations (10% of initialization) result in
non-zero barrier after 50% of training time. While prior
works find that models become stable to training noise after
the first few epochs of training (Fort et al., 2020; Frankle
et al., 2020a), we quantify the scale of perturbation needed
to induce barriers beyond this critical point, showing that
stability continues to increase throughout training.

Early instability is direction-independent. Comparing
batch versus Gaussian perturbations (Figure 2), we find
that although networks are more stable to the latter (which
are evenly distributed in direction), networks perturbed at
initialization have high barriers for both. This shows early
instability is mainly attributable to the network’s state, and
not the direction or magnitude of perturbation. However,
later instability does vary depending on the direction of
perturbation, which suggests that findings that use training
noise (Fort et al., 2020; Frankle et al., 2020a) may not be
transferrable to other kinds of perturbations.

Training divergence is unlikely to be caused by permuta-
tions. Comparing barriers with and without permutation
alignment (Figure 2), we find that applying permutations
to minimize the L2 distance between networks does not
reduce barriers.5 While we cannot rule out the possibility
that better (and more costly) alignment methods may reduce
barriers, we argue that this is unlikely. Prior work aligning

5We omit L2 distance between networks after alignment, as
it is generally not reduced greatly by weight matching (Ito et al.,
2025).
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differently initialized networks finds that weight matching
can reduce barriers to some degree even when it is outper-
formed by other methods (Peña et al., 2023; Navon et al.,
2024; Ainsworth et al., 2023), whereas in our case of iden-
tically initialized networks, weight matching is unable to
reduce barriers at all. This suggests that training instability
produces real functional differences between networks, as
opposed to simply permuting weights that are otherwise
equivalent.

4.2. Functional Diversity

Comparing the similarity of intermediate representations
in Figures 3 and 23, we find that Angular CKA (Eq. 5)
correlates with earlier and larger perturbations (left), as
well as barriers after training (middle). This again indicates
functional differences beyond weight symmetries.6

Since model ensembling benefits from diversity, we also
consider whether intentionally perturbing networks can im-
prove ensembling performance. This effect is most useful
for fine-tuned networks, which necessarily have reduced
diversity due to being trained from the same initial state far
from random initialization. Figure 3 (right) and Figure 15
show that when ensembling the original and perturbed net-
works, ensemble performance indeed scales with Angular
CKA dissimilarity. However, fine-tuning ViT models on
CIFAR-100 does not share this trend (Figure 21). This
contradiction may be explained by observations of similar
performance between ensembling and averaging in Utans
(1996).

4.3. Effect of Hyperparameter Settings

We next compare the stability of different training schemes
T for ResNets trained on CIFAR-10: no weight decay, 10x
learning rate warm-up, 4x batch size, Adam, a shallow-
wide architecture with similar numbers of parameters (exact
details in Table 1).

Figures 4 and 12 show that, in line with prior work (Altıntaş
et al., 2023; Vlaar & Frankle, 2022), reducing learning rate
(by increasing warm-up) and increasing batch size improve
stability. Adam and weight decay reduce stability, which we
speculate may be due to their effect on the loss landscape’s
sharpness, which is known to affect SGD stability (Wu
et al., 2018). The shallow-wide architecture is most stable
of these settings, which we speculate is due to its training
dynamics being more closely aligned with the infinite-width,
linearized kernel regime (Lee et al., 2019; Fort et al., 2019).

Next, we consider if a combination of stability-increasing
hyperparameters could reduce barriers to 0 for networks

6Note that networks with zero barrier still have non-zero Angu-
lar CKA, likely because linearly connected networks can perform
differently on individual examples (Yunis et al., 2022).

perturbed at initialization. We find that training the shallow-
wide architecture combined with 10x learning rate warm-up
improves stability over each individual setting (Figure 4
right), but does not eliminate barriers at initialization.

4.4. Fine-tuning

Having explored the stability of the loss landscape along
trajectories starting from random initialization, we next ex-
amine stability on transfer learning trajectories. Fine-tuning
is known to have greater stability since it starts from pre-
trained networks that have non-random patterns of weights
(Neyshabur et al., 2020), but the relative difficulty of the
pre-training and transfer task can either increase or decrease
stability to training noise (Vlaar & Frankle, 2022).

We again move beyond the effects of training noise to quan-
tify the exact perturbation times and scales at which transfer
learning is unstable. We consider task combinations from
both vision and language domains, as fine-tuning the latter is
known to be unstable to training noise (Juneja et al., 2023).

Pre-training stability depends on the tasks involved.
Starting with CIFAR-10 and CIFAR-100 (Krizhevsky,
2009), we pre-train two ResNet-50 networks with layer nor-
malization on either task, and then fine-tune them on the op-
posite task starting from both early (0.24% of pre-training)
and late (100% of pre-training) pre-trained checkpoints.

Figure 5 (left, center) and Figures 17 and 18 show that fine-
tuning is generally more stable than compared to ResNet-20
(Figure 2) or training the same models from random initial-
ization (Figure 19). This is especially true for later check-
points (p = 191ep319st) and larger perturbations (σ = 0.1,
equivalent to 10% of initialization), whereas fine-tuning
from earlier checkpoints is more similar in barriers with
regular training (Figure 5). This shows that, as in regular
training, instability is mainly a function of pre-training time.

Stability is task-dependent, as transfer from CIFAR-100
to CIFAR-10 is more stable than in reverse. This agrees
with Vlaar & Frankle (2022), who find that pre-training on
related vs. random data improves or worsens (respectively)
the barriers between two points along a training trajectory.7

Vision Transformers (ViTs). To study a different archi-
tecture in the vision domain, we perturb the fine-tuning
trajectories of ViTs (Dosovitskiy et al., 2021) of varying
sizes on CIFAR-100 (Appendix A.2). While we were only
able to consider checkpoints at the end of pre-training, Ap-
pendix D.2 shows that, consistent with our previous findings,
larger and earlier perturbations during fine-tuning lead to
larger barriers.

7Our work differs in that we consider two diverging trajectories.
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Figure 5. Stability of transfer learning on vision tasks: a ResNet-50 is pre-trained on CIFAR-100 and fine-tuned on CIFAR-10 (left)
or vice versa (middle). Barriers (y-axis) are plotted against perturbation magnitudes (x-axis) for various pre-training durations and
perturbation times (circle marker colors). See Appendix A.2 for details, and Tables 4-5 for barriers less than 10−2. Right: fine-tuning
stability of Multi-BERT on QNLI, starting from 20K, 200K, and 2000K checkpoints with early and late perturbation times (diamond
marker colors). For other tasks (MRPC, RTE, SST-2, and CoLA), see Figure 22. For ViT and OLMo, see Figures 20 and 24 respectively.

Pre-training does not always increase fine-tuning stabil-
ity. Having established that longer pre-training improves
stability for small-scale vision models, we next examine
heavily pre-trained language models. This setting is par-
ticularly interesting because recent work by Juneja et al.
(2023) demonstrates that, unlike vision models (Neyshabur
et al., 2020), training noise can cause language models to
converge to distinct basins after fine-tuning.

To investigate this, we analyze the stability of Multi-BERT
(Sellam et al., 2022), which provides intermediate check-
points for every 20,000 steps during pre-training. We take
checkpoints at 20k, 200k, and 2000k (100%) steps of pre-
training time as starting points and fine-tune on various
GLUE tasks (Wang et al., 2019): natural language infer-
ence (QNLI, RTE), paraphrase and similarity assessment
(MRPC), sentiment classification (SST-2), and linguistic
acceptability (CoLA).

Figures 5 and 22 show that BERT is more sensitive to the
size of perturbations when compared with our vision exper-
iments (Figure 5 left, middle). For all pre-training check-
points, earlier perturbations during fine-tuning consistently
lead to larger barriers. However, unlike our vision settings,

stability does not consistently improve with pre-training
time. Notably, for QNLI and RTE (Figure 22), the final pre-
trained checkpoint (2000k) has the largest barriers. When
evaluating the pre-trained network on these tasks (Table 3),
we observe that the 2000k checkpoint has worse test accu-
racy, despite having lower cross-entropy when compared
with the 200k and 20k checkpoints. We speculate that this
may be due to overfitting on the pre-training distribution,8

which could cause the model to become brittle to pertur-
bations during fine-tuning—a phenomenon termed “catas-
trophic overfitting” by Springer et al. (2025).

Decoder-only models. Billion-parameter decoder-only
models are widely used in fine-tuning and model merging,
but their training dynamics remain severely understudied.
To address this gap, we fine-tune intermediate checkpoints
of OLMo (Groeneveld et al., 2024) on the math problem
dataset GSM8K (Cobbe et al., 2021a). Figure 24 shows
that pre-training longer can again reduce stability to fine-
tuning, corroborating our MultiBERT findings. Moreover,
we observe the same trends—where earlier and larger per-
turbations result in higher barriers—as in previous settings.

8MultiBERT was pre-trained for around 100 epochs.
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5. L2 Divergence and Barriers
Barriers and L2 divergence do not evolve according to a
linearized dynamical system. Figure 6 shows the rates
at which barriers and L2 divergence increase as training
progresses.9 Contrary to the linearized dynamics derived in
Appendix B.4, neither barrier nor L2 increase exponentially
over training. More work is needed to explore other mecha-
nisms that could drive these observed rates of divergence.

Barriers scale with with exponential L2 divergence in
vision settings. Although networks can diverge in weight
space without increasing barriers (Frankle et al., 2020a;
Vlaar & Frankle, 2022), we find in our experiments that
barriers and L2 divergence after training exhibit a strong
log-linear relationship (Figure 7 left). This finding differs
from Vlaar & Frankle (2022) in that they look at the distance
traveled from initialization, whereas we look at the distance
between training trajectories which started from the same
point. We find that the proportion of identity elements in the
aligning permutations P is also related to barriers, albeit to a
weaker extent (Figure 16). Since P minimizes L2 distance
between θT and θ′T , this is likely due to the correlation
between barriers and L2 divergence.

Interestingly however, fine-tuned language models show
little or no correlation between L2 divergence and barriers
(Figure 7 right, Figure 26). This suggests that the relation-
ship between L2 and barrier may only appear in smaller-
scale models, which highlights the need for large-scale and
multi-modal experiments (Juneja et al., 2023).

6. Discussion & Conclusion
We present a method for measuring whether neural network
training is stable (reliably converging to the same basin),

9Since barriers and L2 are negligible at perturbation time and
grow throughout training, this indicates that our results are due to
instability and not just the initial perturbation.
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Figure 7. Train loss barriers vs. L2 distance after training between
the original and batch-perturbed models for ResNet-20 models
trained on CIFAR-10 using various hyperparameter settings (left),
and BERT models fine-tuned on QNLI (right). For additional
fine-tuning results, see Figures 21 and 24 to 26 for other BERT
tasks, ResNet, ViT, and OLMo respectively.

for a distribution of perturbations, applied at any time in
training, on any initial network weights, and for any training
procedure. This method allows us to evaluate stability over
more conditions, and at a finer precision, than was possible
in prior works that only consider the effects of training noise
(Vlaar & Frankle, 2022; Fort et al., 2020; Frankle et al.,
2020a). Our experiments show that although randomly
initialized networks are extremely unstable, stability rapidly
increases with training to be robust to perturbations much
larger than training noise.

Our work is consistent with the finding in Sarnthein et al.
(2023) that a student network initialized very close to a
random teacher nevertheless diverges quite far after training.
Further work is needed to understand why, unlike in our
setting, the student in Sarnthein et al. (2023) remains in the
same linearly connected basin as the random teacher.

While instability near initialization is universal, many trends
are inconsistent and depend on the task or model. We find
that (1) the rate at which stability increases along training
trajectories varies greatly, (2) more pre-training does not
always improve stability during fine-tuning, (3) L2 diver-
gence correlates strongly with barriers in some cases but not
others, and (4) the rates at which L2 and barriers diverge
do not match that of a straightforward dynamical system.
While the specific counter-examples we have surfaced are
sufficient evidence for these results, a detailed exploration
of their underlying causes and the circumstances in which
they hold (such as in isolating the effects of task versus
architecture) is left for future work. Further investigation
is also needed to determine (1) if certain hyperparameter
settings entirely eliminate instability at initialization, and (2)
what perturbations, if any, can be used to reliably improve
ensemble performance.
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Technologies (FRQNT doctoral research award #352816).
Computing resources were provided by Mila–Quebec Arti-
ficial Intelligence Institute, and the NVIDIA Corporation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Adilova, L., Andriushchenko, M., Kamp, M., Fischer,

A., and Jaggi, M. Layer-wise linear mode connectiv-
ity. In International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/
forum?id=LfmZh91tDI.

Ainsworth, S., Hayase, J., and Srinivasa, S. Git re-
basin: Merging models modulo permutation symme-
tries. In International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/
forum?id=CQsmMYmlP5T.
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Table 1. Hyperparameter settings for ResNet-20 trained on CIFAR-10, along with the test accuracy and training cross-entropy loss of the
perturbed model at the end of training. Each setting is averaged over batch and Gaussian perturbations applied at various time steps and
scales, with each configuration repeated with three seeds.

Setting Model Optimizer LR W-up WD BS Steps Acc1te CE1
tr

Standard ResNet20-32 SGD 0.100 0.020 – 128 25000 0.89 ± 0.00 0.13 ± 0.01
10x Warm-up ResNet20-32 SGD 0.100 0.200 – 128 25000 0.89 ± 0.01 0.12 ± 0.01
AdamW (no Weight Decay) ResNet20-32 AdamW 0.003 0.020 – 128 20000 0.89 ± 0.00 0.13 ± 0.01
Batch Size = 512 ResNet20-32 SGD 0.100 0.020 – 512 10000 0.88 ± 0.00 0.15 ± 0.02
Perturb Norm Weights ResNet20-32 SGD 0.100 0.020 ✓ 128 20000 0.90 ± 0.00 0.15 ± 0.00
ResNet-8 ResNet8-64 SGD 0.100 0.020 – 128 25000 0.89 ± 0.00 0.14 ± 0.01
ResNet-8, 10x Warm-up ResNet8-64 SGD 0.100 0.200 – 128 25000 0.89 ± 0.00 0.13 ± 0.01
SGD w. Weight Decay ResNet20-32 SGD 0.100 0.020 ✓ 128 20000 0.89 ± 0.01 0.15 ± 0.01

A. Training Details
In this section, we provide details about our training methodology. Unless otherwise specified, we conducted all ResNet
experiments on individual NVIDIA RTX 8000 GPU with 4 CPU cores. ViT and language model experiments were conducted
on NVIDIA L40S GPUs.

A.1. CIFAR-10 Hyperparameter Experiments

We train residual convolutional models (He et al., 2015) on the CIFAR-10 dataset (Krizhevsky, 2009) using the hyperparam-
eter settings in Table 1. Training times are chosen so that cross-entropy loss on the training data for the perturbed model is
below 0.15 after training, on average. All models have test accuracies within 2 percentage points (88-90%). For ease of
interpretation, training times are rounded up to the nearest 5000 steps. Although the models in our experiments are not fully
converged, and some variations remain between different hyperparameter settings, we did not find our results correlate with
different training times, or the network’s final train or test performance (Figure 8).

To simplify weight and activation matching, we use layer normalization (Ba et al., 2016) instead of batch normalization,
resulting in a slight reduction in performance. When evaluating barriers after permutation alignment, this avoids having to
do additional inference passes to correct the batch normalization statistics at each interpolation step (Jordan et al., 2023).
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Figure 8. Train loss barriers against test accuracy (left) and training cross entropy loss (right) of the perturbed model at the end of
training.

A.2. Finetuning Experiments

CIFAR pre-training We pre-trained two ResNet-50 models with different initializations on on both CIFAR-10 and
CIFAR-100 datasets, with layer normalization. Each model was trained for 75,000 steps (approximately 200 epochs) using
SGD with momentum 0.9 and cosine annealing schedule. We used a peak learning rate of 0.1 with a 2.5% warm-up, with
a weight decay of 10−4 and a batch size of 128. The model was trained with horizontal flips, random rotations up to 10
degrees, random translations up to 4 pixels, and cutout augmentation with 2 pixels.
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CIFAR Fine-tuning Starting from our pre-trained ResNet-50 checkpoints, we fine-tuned each model on CIFAR-10 (or
CIFAR-100) using stochastic gradient descent with momentum 0.9 for 20,000 steps.

BERT Fine-tuning Experiments We conducted experiments on the GLUE benchmark (Wang et al., 2019) using the
MultiBERT model (Sellam et al., 2022), specifically using checkpoints from google/multiberts-seed 0 and
google/multiberts-seed 1 available on HuggingFace.10 All tasks share the same base hyperparameters of AdamW
(Loshchilov & Hutter, 2017) with a learning rate of 2× 10−5 and a weight decay of 0.01, while the batch size and training
duration were scaled according to dataset size, as detailed in Table 2.

Due to computational constraints, we selected QNLI from among the larger datasets with more than 100k examples (QNLI,
QQP, MNLI), and followed Devlin et al. (2019) by fine-tuning for three epochs. For the medium-sized SST-2 dataset, we
trained for 2,500 steps. Small datasets (RTE, MRPC) with 2.5k–3.7k examples were trained for 500 steps using a batch size
of 32, while the medium-small dataset CoLA (5.7k–8.5k examples) was trained for 1,500 steps with the same batch size.
These settings ensure that all models achieved a training cross-entropy loss below 0.2, although our networks appear to have
overfit the fine-tuning task in some cases (Table 3).

Table 2. Task-specific hyperparameters for fine-tuning MultiBERT on GLUE tasks. Training schedule transitions from step-based to
epoch-based for larger datasets to ensure sufficient coverage of training data.

Dataset Examples Batch Size Training Schedule

QNLI 105k 128 3 epochs
SST-2 67k 128 2500 steps
CoLA 8.5k 32 1500 steps
MRPC 3.7k 32 500 steps
RTE 2.5k 32 500 steps

Table 3. Multi-BERT (seed 0) test performance of pre-trained checkpoints before fine-tuning (zero-shot evaluation) and after fine-tuning.

Before Training End of Fine-tuning
Dataset Starting Checkpoint Acc CE Acc CE

COLA 2000k 0.61 0.68 0.84 0.58
200k 0.38 0.75 0.77 0.79
20k 0.57 0.68 0.72 0.87

MRPC 2000k 0.69 0.68 0.85 0.43
200k 0.32 0.87 0.83 0.45
20k 0.32 0.77 0.77 0.82

QNLI 2000k 0.44 0.70 0.91 0.26
200k 0.52 0.75 0.89 0.32
20k 0.54 0.70 0.84 0.38

RTE 2000k 0.47 0.70 0.66 0.86
200k 0.53 0.74 0.64 1.06
20k 0.53 0.70 0.64 1.13

SST2 2000k 0.49 0.70 0.92 0.30
200k 0.48 0.72 0.91 0.34
20k 0.51 0.70 0.88 0.48

ViT Fine-tuning We fine-tune on CIFAR-100 starting from four Vision Transformers (ViTs) (Doso-
vitskiy et al., 2021) on HuggingFace: google/vit-base-patch16-224 (86M parameters),11

10https://huggingface.co/google/multiberts-seed 0-step 0k and https://huggingface.co/google/
multiberts-seed 1-step 0k.

11https://huggingface.co/google/vit-base-patch16-224
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google/vit-base-patch16-224-in21k (86M parameters),12 google/vit-large-patch16-224-in21k
(304M parameters),13 and google/vit-huge-patch14-224-in21k (632M parameters).14 All models were
pre-trained on ImageNet-21k, with vit-base-patch16-224 additionally fine-tuned on ImageNet-1k (Russakovsky
et al., 2015).

We use the same hyperparameters across all model sizes: AdamW (Loshchilov & Hutter, 2017) optimizer with learning rate
2× 10−4, weight decay 1× 10−4, batch size 32, and cosine annealing schedule with 10% warm-up over 5 epochs. Data
augmentation consisted of horizontal flips, random rotation (±10◦), random translation (±16 pixels), and cutout patches
(16× 16). Images are resized to 224× 224 to match the input resolution expected by the models.

OLMo Fine-tuning We fine-tune OLMo-1B15 on GSM8K (Cobbe et al., 2021b) starting from various checkpoints
provided throughout its ≈ 740K pre-training steps (3 trillion tokens). For our setting, we select three checkpoints from
different training phases: (1) first available checkpoint (4B tokens), (2) mid-way through pretraining (1.5T tokens), and (3)
final checkpoint (3T tokens). We fine-tuned each checkpoint for 5,000 steps using AdamW with learning rate of 2× 10−5

and cosine annealing with 10% warm-up.

B. Methodological Details
In all of our experiments, we train two networks simultaneously with deterministic computations enabled, using identical
random seeds for random initialization (if applicable), batch order and data augmentation. We confirm that training with no
perturbations results in exactly identical networks as expected.

All evaluations of models trained from initialization are averaged over three runs, while all evaluations for fine-tuned models
listed in Appendix A.2 are averaged over two runs.

B.1. Computing Barriers

To compute barriers, we evaluate 11 equidistant values of α ∈ [0, 1] along the linear path between θT and θ′T .

In our definition of barriers (Equation (4)), we interpolate between the loss of the endpoints following (Sharma et al., 2024),
rather than taking their average loss as in Frankle et al. (2020a). This is because the former follows from the definition of
convexity and is more appropriate for describing a convex loss basin. In practice, since θT and θ′T have near-identical loss in
our experiments, the definitions are interchangeable.

We also measure test error barriers by replacing ℓ with the 0-1 loss over test data. In practice test barriers are slightly less
than train barriers as the network reach near-zero loss on the training data but not the test data, allowing for larger barriers in
the former. However, since test error barriers follow the same trends as training cross-entropy barriers, we omit them from
the text.

B.2. Computing Angular CKA

There are many different representational similarity methods, and a comparison of them is beyond the scope of this work.
We use CKA for a number of reasons: it is invariant to linear transformations (other than affine) which aligns well with the
capacity of neural network layers (Kornblith et al., 2019; Lange et al., 2023), it has been used to compare neural networks in
other contexts (Nguyen et al., 2021), is less dependent on the weighting of principal components than SVCCA (Raghu et al.,
2017), and it can be applied to networks with more intermediate outputs nk than the number of test inputs m (Kornblith
et al., 2019). We report Angular CKA for the simple reason that it gives a distance which increases with dissimilarity, which
is in concordance with the other measurements we make. Note that Angular CKA and CKA differ only in the application of
arccosine.

12https://huggingface.co/google/vit-base-patch16-224-in21k
13https://huggingface.co/google/vit-large-patch16-224-in21k
14https://huggingface.co/google/vit-huge-patch14-224-in21k
15https://huggingface.co/allenai/OLMo-1B-hf
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We compute the Angular CKA between the final hidden representation as follows:

dCKA(θT , θ
′
T )) = CKA [fL−1(θT ), fL−1(θ

′
T )] (5)

CKA(X,Y) = arccos

(
HSIC(X,Y)

HSIC(X,X)HSIC(Y,Y)

)
where L is the number of residual or attention blocks, fL−1 : Rm×n0 → Rm×nk is the last block’s output on a fixed set
inputs X ∈ Rm×n0 , and HSIC is the Hilbert-Schmidt Independence Criterion, which measures cross correlation between
centered similarity matrices.

We use the implementation by Lange et al. (2023), which includes certain modifications to speed computation. Namely, we
sample m = 1000 examples as Lange et al. (2023) shows CKA can be reliably estimated using reasonably few examples,
and we use their reduced-bias estimator for HSIC:

HSIC(X,Y) =
2

m(m− 3)
⟨tril(HXX⊤H), tril(HYY⊤H)⟩F

where m is the number of test inputs, tril extracts the lower triangular portion of a matrix, H = I− 11⊤/m is a centering
matrix that subtracts the mean, and ⟨·, ·⟩F is the Frobenius norm. Effectively, this estimator ignores the diagonal of the
similarity matrix HXX⊤H.

B.3. Perturbation Scale

To ensure fair comparisons between different perturbation methods and network architectures, we normalize all perturbations
to have a consistent L2 magnitude, which for ease of interpretation is given relative to the network’s size at initialization (Eq.
6). Formally, we ensure the squared norm of ε matches the total variance at initialization of the perturbed weights, so that

ε =
ε̂ ·M

∥ε̂ ·M∥2

√
V ar[θ0 ·M ] (6)

where ε̂ is a batch or Gaussian perturbation sample, M is a 0-1 mask of the weights to perturb, · is the element-wise product,
V ar is the expected variance (not the sample variance), and θ0 are the network’s initial weights. Thus, for example, a
perturbation of magnitude σ = 0.01 is approximately 1% of the size of θ0.

Finally, in order to preserve the distribution of activations after each normalization layer, we do not perturb biases or normal-
ization weights in our experiments. While prior work has found that linear mode connectivity can vary between different
layers (Vlaar & Frankle, 2022; Zhou et al., 2023; Adilova et al., 2024), we did not find that our results changed significantly
depending on which layers were perturbed. Figure 9 shows results when only perturbing biases and normalization weights.
In this case, we use the same scale of perturbations as we would normally assign to the weights in the layer following the
biases or normalization weights.

B.4. Linearized Approximation For L2 Divergence

A classical result of dynamical systems states that a linearized system subject to a small perturbation can diverge exponentially
with respect to time at a rate which depends on the largest eigenvalue (i.e. top Lyapunov exponent) of the gradient of the
training map (Strogatz, 2019):

T (θi + ε) ≈ T (θi) + ε⊤∇T θi,

T T (θ0 + ε) ≈ T T (θ0) + ε⊤
T∏

t=1

∇T θ0

∥θT − θ′T ∥2 ≤ ∥ε∥2eλt (7)

where ∇T θ0 is the gradient of the training map with respect to the weights and λ is the top eigenvalue over all the gradients
at each step t.

Substituting in the definition of SGD, we find that the L2 divergence between the original and perturbed models after
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training depends on the curvature of the loss landscape:

T (θi) = θi − η∇ℓθi, ∇T θi = I − ηiHi,

∥θT − θ′T ∥2 ≤ ∥ε∥2eλHt (8)

where ηi is the learning rate, Hi is the Hessian of the weights, and λH is the largest eigenvalue over all I−ηiHi. Divergence
results either from high positive curvature as in Wu et al. (2018), but additionally if there is any negative curvature in the
perturbation direction, and |λH | > 1 implies the possibility of exponential growth in divergence over training.

C. Further Experiments
C.1. Baselines

Stability is not specific to layer type. In the main text (Figure 2), we excluded norm weights and biases from perturbations.
However, in Figure 9, we show that perturbing only norm layers leads to similar trends. This suggests that fine-tuning
stability is influenced more by overall network dynamics rather than specific layer types. While individual parameters or
layers may have varying importance as noted in previous work (Adilova et al., 2024), batch perturbations already capture
this effect to some extent. The increased barriers for the smallest perturbations at initialization are an artifact of numerical
instability—in our regular experiments, we avoid this problem by reducing the fraction of perturbed weights instead of
reducing the perturbation scale beyond σ = 10−4.
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Figure 9. Train loss barriers before and after permutations when perturbing only normalization layers. Results are shown for batch (left)
and Gaussian (right) perturbations on ResNet-20 trained with SGD (momentum, no weight decay), using a learning rate of 0.1, 2%
warm-up, and a batch size of 128 for 20,000 steps.
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Figure 10. Left: Comparison of training loss barriers between our butterfly setting and Frankle et al.’s spawning setting. In the spawning
setting, each network is trained with different non-determinism after perturbation step t, while our method applies a single perturbation.
As expected, our single-perturbation approach provides a lower bound on the spawning barriers. Right: L2 magnitude of the expected
deviation between two copies of the same model, when each model takes a single independent training step at time t.

How do our perturbations compare to SGD noise? To establish the relative magnitude of our perturbations vs. SGD noise,
we replicate the parent-child spawning experiment of Frankle et al.. Figure 10 shows that our batch perturbations are a lower
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bound on the Frankle baseline’s barriers, meaning that the instability resulting from training independently for multiple
steps must be at least the instability resulting from a single independent training step.

Note that for this comparison, we scale batch perturbations to the expected magnitude of SGD noise at the perturbation time
t. This makes batch perturbation equivalent to taking only one step at time t with different SGD noise, as opposed to using
different SGD noise from t onwards in the Frankle baseline.

C.2. Perturbing Only A Fraction of Weights.

We further decrease the scale of our perturbations from Figure 2 by perturbing only a fraction of the weights with our
smallest perturbation scale of 10−4. Strikingly, we find that perturbing as little as a single weight, which occurs when the
fraction of perturbed weights is 10−6, is sufficient to create barriers at initialization (Figure 11, right). The scale of this
perturbation (Figure 11, left) is well below that of noise caused by hardware indeterminacy.
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Figure 11. Left: absolute L2 norm of the noise as a function of the fraction of perturbed weights. Right: train loss barriers as a function
of the fraction of perturbed weights.

C.3. Additional Hyperparameter Settings
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Figure 12. Same as Figure 2 with AdamW without weight decay and learning rate of 0.003 (left), batch size of 512 (middle), and weight
decay (right).

In this section we present the results of training ResNet-20 on CIFAR-10 for all hyperparameter combinations listed in
Table 1.

It is well-known that neural network training is highly sensitive to optimization hyperparameters (Smith, 2018). Our
experiments corraborate the complex interdependencies between key optimization hyperparameters, suggesting that further
theoretical exploration is needed. We specifically focus on the impact of optimizer choice, batch size, and weight decay.

SGD enhances training stability. The choice of optimizer significantly impacts the stability of the training map. Additionally,
networks trained with Adam also exhibit higher L2 distances (Figure 7). We stipulate that this phenomenon is linked to the
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implicit bias of SGD. Specifically, Bradley et al. (2022) highlight that SGD’s inherent noise helps it avoid high-curvature
regions, which are often linked to poor generalization and, in our setting, could likely contain linearly connected minima.

In our experiments, we observed that larger batch sizes lead to higher loss barriers, suggesting a trade-off between batch size
and stability. This phenomenon aligns with findings from Keskar et al. (2017), who show that larger batch sizes can lead to
sharper minima, which might increase the loss barriers and potentially hurt generalization.

Weight decay provides slightly more stability, particularly right after initialization. D’Angelo et al. (2024) highlight that
weight decay modifies the optimization dynamics, enhancing the implicit regularization of SGD through loss stabilization
mechanisms. They also emphasize the role of gradient clipping, which stabilizes training, particularly at the edge of stability.

C.4. Functional Diversity For Additional Hyperparameter Settings

We replicate Section 4.2 on two of our additional hyperparameter settings: with weight decay, and with 10x warm-up. The
results in Figures 13 to 15 closely agree with our findings in Figure 3.
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Figure 13. Representational similarity distance measured via Angular CKA for ResNet-20 with weight decay (left) or 10x warm-up
(right).
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Figure 15. Test accuracy of an ensemble of the original and perturbed models after training, versus representational similarity distance, on
ResNet-20 with weight decay (left), ResNet-8 with 10x warm-up (middle) with perturbation time indicated by color, nd including the
standard setting from Figure 3, with settings indicated by color (right).

C.5. Fixed Points of Aligning Permutations

While weight matching is unable to reduce barriers in our case of identically initialized networks, we investigate whether the
underlying mechanism proposed by (Entezari et al., 2022)—that barriers arise from network permutations—is still relevant
to our observations. We consider if the observed barriers and L2 distances between the original and perturbed networks
correlate with the number of fixed points in the permutations found by weight alignment (Ainsworth et al., 2023). Here,
fixed points refer to the un-permuted elements in the aligning permutations. Since we expect two networks with identical
weights to be aligned by permutations consisting only of fixed points, the fraction of fixed points can be used to indicate the
degree to which two diverging networks have been permuted with respect to one another.

Figure 16 suggests a weak correlation, where the number of fixed points is inversely proportional to both the barrier heights
and the L2 distance between the networks before alignment in the ResNet settings. Unfortunately, this observation does not
extend to our ViT or BERT settings, as weight matching fails to identify non-trivial permutations (i.e., permutations other
than the identity) for these transformer architectures.
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Figure 16. Relationship between the fraction of fixed points (un-permuted elements) in the weight matching permutation aligning the
ResNet-20 models trained on CIFAR-10 from Figure 2, and L2 divergence (left) or train barriers (right).

D. Further Fine-tuning Results
D.1. ResNet Fine-Tuning

Extended pre-training yields near-zero fine-tuning barriers in ResNet-50/CIFAR settings. Figure 5 shows that fine-tuning
from later checkpoints greatly improves stability in ResNet-50 experiments. For improved readability, we zoom into the
perturbations with σ ≤ 10−2 in Figure 18 and Tables 4 and 5, revealing that transferring from CIFAR-100 to CIFAR-10
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Figure 17. Same as Figure 5 (left), but with additional pre-training times and perturbation times from early in training. Stability of transfer
learning on vision tasks: a ResNet-50 is pre-trained and fine-tuned (see Appendix A.2 for details) from CIFAR-100 to CIFAR-10 (left) or
vice versa (right). Barriers (y-axis) are plotted against perturbation magnitudes (x-axis) for various combinations of initial pre-trained
weights and perturbation times (colors).
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Figure 18. Same as Figure 5 (left) and Figure 17, but with additional pre-training times and perturbation times from late in training.
Barriers at scales < 10−2 are near-zero (see Tables 4 and 5 for exact values).

and vice-versa results in near-zero barriers. The CIFAR-100 to CIFAR-10 direction exhibits greater stability, which could
indicate that CIFAR-100 pre-training is better suited for optimization on CIFAR-10 than the other way around.

Random initializations are less stable than pre-trained initializations. In Figure 18, we demonstrated that pre-training
improves fine-tuning stability, while Figure 17 suggested that earlier checkpoints are more brittle to perturbations. As
a baseline, we train a ResNet-50 from random initialization on CIFAR-10 and find that it exhibits even larger barriers
(Figure 19), with a similar magnitude to training from scratch.
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Figure 19. Same as Figures 5, 17 and 18 (left panel of each), but with randomly initialized ResNet-50 instead of networks pre-trained on
CIFAR-100. Train loss barriers are reported for batch perturbations during fine-tuning on CIFAR-10 using the recipe from Appendix A.2.
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Table 4. Train loss barriers and L2 distance in Cifar-100 → Cifar-10 setting. Same as Figure 18 (left).

Starting Checkpoint Relative Perturb Step (%) σ L2 Distance Train BCE

191ep319st 0.005 0.00001 39.41 ± 0.23 0.00 ± 0.00
191ep319st 0.005 0.00100 39.46 ± 0.18 0.00 ± 0.00
191ep319st 0.005 0.01000 40.41 ± 0.82 0.00 ± 0.00
191ep319st 0.5 0.00001 39.49 ± 0.23 0.00 ± 0.00
191ep319st 0.5 0.00100 39.42 ± 0.19 0.00 ± 0.00
191ep319st 0.5 0.01000 40.03 ± 0.62 0.00 ± 0.00
191ep319st 10 0.00001 38.02 ± 0.18 0.00 ± 0.00
191ep319st 10 0.00100 38.04 ± 0.21 0.00 ± 0.00
191ep319st 10 0.01000 38.19 ± 0.13 0.00 ± 0.00
57ep213st 0.005 0.00001 40.81 ± 0.14 0.00 ± 0.00
57ep213st 0.005 0.00100 40.93 ± 0.15 0.00 ± 0.00
57ep213st 0.005 0.01000 41.49 ± 0.44 0.00 ± 0.00
57ep213st 0.5 0.00001 40.90 ± 0.06 0.00 ± 0.00
57ep213st 0.5 0.00100 40.82 ± 0.17 0.00 ± 0.00
57ep213st 0.5 0.01000 41.26 ± 0.29 0.00 ± 0.00
57ep213st 10 0.00001 39.50 ± 0.14 0.00 ± 0.00
57ep213st 10 0.00100 39.50 ± 0.13 0.00 ± 0.00
57ep213st 10 0.01000 39.63 ± 0.10 0.00 ± 0.00

Table 5. Train loss barriers and L2 distance in Cifar-10 → Cifar-100 setting. Same as Figure 18 (right).

Starting Checkpoint Relative Perturb Step (%) σ L2 Distance Train BCE

191ep319st 0.005 0.00001 67.98 ± 0.00 0.00 ± 0.00
191ep319st 0.005 0.00100 68.05 ± 0.00 0.00 ± 0.00
191ep319st 0.005 0.00500 68.92 ± 0.00 0.01 ± 0.00
191ep319st 0.005 0.01000 70.73 ± 2.25 0.01 ± 0.00
191ep319st 0.5 0.00001 67.89 ± 0.00 0.00 ± 0.00
191ep319st 0.5 0.00100 67.96 ± 0.00 0.01 ± 0.00
191ep319st 0.5 0.00500 68.18 ± 0.00 0.01 ± 0.00
191ep319st 0.5 0.01000 68.34 ± 0.25 0.01 ± 0.00
191ep319st 10 0.00001 64.05 ± 0.00 0.00 ± 0.00
191ep319st 10 0.00100 64.11 ± 0.00 0.00 ± 0.00
191ep319st 10 0.00500 64.47 ± 0.00 0.00 ± 0.00
191ep319st 10 0.01000 65.54 ± 0.94 0.00 ± 0.00
57ep213st 0.005 0.00001 62.34 ± 0.00 0.01 ± 0.00
57ep213st 0.005 0.00100 62.68 ± 0.00 0.01 ± 0.00
57ep213st 0.005 0.00500 63.31 ± 0.00 0.01 ± 0.00
57ep213st 0.005 0.01000 65.23 ± 2.39 0.01 ± 0.00
57ep213st 0.5 0.00001 62.32 ± 0.00 0.01 ± 0.00
57ep213st 0.5 0.00100 62.34 ± 0.00 0.01 ± 0.00
57ep213st 0.5 0.00500 62.70 ± 0.00 0.01 ± 0.00
57ep213st 0.5 0.01000 63.21 ± 0.72 0.01 ± 0.00
57ep213st 10 0.00001 59.47 ± 0.00 0.00 ± 0.00
57ep213st 10 0.00100 59.43 ± 0.00 0.00 ± 0.00
57ep213st 10 0.00500 59.50 ± 0.00 0.00 ± 0.00
57ep213st 10 0.01000 59.70 ± 0.29 0.00 ± 0.00
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D.2. ViT Fine-Tuning

Initial fine-tuning stability experiments on ResNets and MultiBERTs suggested opposed trends between vision tasks with
convolutional architectures, and language tasks with tarnsformer architectures. To disentangle whether this difference is due
to the nature of the task or architecture, we applied our experimental procedure to Vision Transformers (ViTs), which are
representative of the transformer architecture and larger-scale models than ResNet-50. The sources for the pre-trained ViTs
and the fine-tuning procedure we use are specified in Appendix A.2.

While we did not have access to intermediate training checkpoints for ViT models, we instead compare four ViTs of
different sizes which were pre-trained on ImageNet variants: google/vit-base-patch16-224 (86M parameters), google/vit-
base-patch16-224-in21k (86M parameters), google/vit-large-patch16-224-in21k (304M parameters), and google/vit-huge-
patch14-224-in21k (632M parameters). The size of each pre-training dataset serves as a proxy for pre-training duration.

Extending our findings to ViTs fine-tuned on CIFAR-100. Consistent with our findings on smaller convolutional networks, in
Figure 20 we observe that earlier and larger perturbations cause more pronounced barriers. Interestingly, the google/vit-base-
patch16-224 variant, which underwent additional fine-tuning on ImageNet-1K after its initial ImageNet-21K pre-training,
effectively represents a longer training process. Although the exact learning rate schedule is unknown, this setting resembles
the extended pre-training observed in later BERT checkpoints. Models fine-tuned from this variant (Figure 20, top left)
exhibit the largest barriers among all settings, with barriers one order of magnitude larger than those from google/vit-base-
patch16-224-in21k (Figure 20, top right). This provides additional evidence that extended pre-training reduces fine-tuning
stability. Future work could investigate the stability of intermediate ViT checkpoints.

Figure 20. Stability of various ViT architectures on CIFAR-100. Training loss barriers after training (y-axis) are plotted against perturbation
magnitude (x-axis) and perturbation step (color). We fine-tune four pre-trained ViTs of different sizes: ViT-Base/16-224 (86M parameters,
pre-trained on ImageNet-21K and then fine-tuned on ImageNet), ViT-Base/16-224-in21k (86M parameters pre-trained on ImageNet-21k),
ViT-Large/16-224-in21k (304M parameters), and ViT-Huge/14-224-in21k (632M parameters).

D.3. BERT Fine-Tuning

Figure 22 plots additional fine-tuning tasks as described in Appendix A.2.

Representational similarity for BERT models. We also provide Angular CKA plots for BERT on MRPC and QNLI datasets
in Figure 23. Figure 23 shows that barriers are correlated with Angular CKA, indicating real functional differences between
the networks. This is consistent with our findings in vision models (Figures 3, 14 and 21 right), unlike the correlation

25



The Butterfly Effect

10
4

10
20.4

0.5

0.6

0.7

Tr
ai

n 
A

ng
ul

ar
 C

K
A

google/vit-base-patch16-224 -
Batch

0.4 0.5 0.6 0.7
Train Angular CKA

0.9175

0.9200

0.9225

Te
st

 E
ns

em
bl

e 
A

cc
.

google/vit-base-patch16-224 -
Batch

0.4 0.5 0.6 0.7
Train Angular CKA

10
3

10
1

CE

google/vit-base-patch16-224 -
Batch

t = 0.01% t = 4.80% t = 9.60%

Figure 21. Left: representational similarity distance measured via Angular CKA for ViT-base. Middle: test ensembling accuracy against
Angular CKA. Right: training loss barrier against Angular CKA.

between barriers and L2 divergence (Figure 26) which is not consistent between vision and language settings.

D.4. OLMo Fine-Tuning

Figure 24 demonstrates that the trends we observe in terms of perturbation time and magnitude extend to decoder-only large
language models. Consistent with our MultiBERT findings, we find that more pre-training does not necessarily lead to
improved fine-tuning stability.

D.5. L2 Divergence and Barriers

Here, we examine the relationship between the barriers and the L2 divergence between models at the end of training in
greater detail. Figure 25 (left, middle) shows that fine-tuning on vision tasks, such as transferring from CIFAR-100 to
CIFAR-10 and vice versa, follows the trends presented in Figure 7 (left). We see that this direct relationship is weak or
non-existent when transferring ViTs from ImageNet to CIFAR-100 (Figure 25 right), as well as for the GLUE benchmark
in our study (Figure 26), with QNLI and COLA exhibiting almost no correlation. Interestingly, OLMo fine-tuned on
GSM8K (Figure 24, right) shows a clearer correlation between barriers and L2 divergence, which more closely resembles
our ResNet-20 results (Figure 7, left) than BERT.
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Figure 22. Same as Figure 5 (right), but with additional pre-training times, perturbation times, and tasks. Fine-tuning stability of Multi-
BERT on QNLI and MRPC, starting from 20K, 200K, and 2000K checkpoints with different perturbation times. Tasks are QNLI (top
left), MRPC (top right), RTE (bottom left), SST-2 (bottom middle), and COLA (bottom right).
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Figure 23. Top: representational similarity distance measured via Angular CKA for MultiBERT on MRPC (left) and QNLI (right).
Bottom: barriers vs. angular CKA on MRPC (left) and QNLI (right).
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Figure 24. Stability of fine-tuning OLMo-1B on GSM8K mathematical reasoning tasks. We fine-tune OLMo-1B checkpoints from
different pre-training stages (early, middle, and final checkpoints) on GSM8K with batch perturbations applied at various training steps.
Left: Loss barriers (y-axis) plotted against perturbation magnitude (x-axis) for different checkpoint combinations and perturbation steps
(colors). Right: Barriers vs. L2 distance between the original and perturbed models. Consistent with our vision experiments, earlier
perturbations and later pre-training checkpoints lead to higher loss barriers, demonstrating that fine-tuning stability patterns generalize
from vision to language models.
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Figure 25. Train loss barriers vs. L2 distance between the perturbed and original models at the end of training for fine-tuning vision
models: ResNet-50 transferring from CIFAR-100 to CIFAR-10 (left), ResNet-50 transferring from CIFAR-10 to CIFAR-100 (middle),
and ViT-base fine-tuned on CIFAR-100 (right). Note the legend for the colors is different in the rightmost plot.
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Figure 26. Train loss barriers vs. L2 distance between the perturbed and original models at the end of training for MRPC, RTE, SST-2,
and COLA.
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E. Additional Log-Scale Plots
These plots are copies of main figure plots with log y-axes, and are included to display a clearer separation between smaller
barriers.
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Figure 27. Same data as Figure 2 with y-axis in log-scale to improve the readability of smaller barriers. Loss barriers on training data at
the end of training (y-axis) are plotted against perturbation magnitude (x-axis) and perturbation step (color indicates fraction of total
training time). Left: barriers due to batch perturbation. Middle: batch perturbation barriers after accounting for permutations. Right:
barriers due to Gaussian perturbation.
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Figure 28. Same as Figure 4 but with y-axis in log-scale for models trained with 20% warm-up time (left), a wider/shallower ResNet8
architecture (middle), and a combination of both settings (right).
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