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Abstract

Linear mode-connectivity (LMC) (or lack thereof) is one of the intriguing charac-
teristics of neural network loss landscapes. While empirically well established, it
unfortunately still lacks a proper theoretical understanding. Even worse, although
empirical data points are abound, a systematic study of when networks exhibit
LMC is largely missing in the literature. In this work we aim to close this gap. We
explore how LMC is affected by three factors: (1) architecture (sparsity, weight-
sharing), (2) training strategy (optimization setup) as well as (3) the underlying
dataset. We place particular emphasis on minimal but non-trivial settings, removing
as much unnecessary complexity as possible. We believe that our insights can
guide future theoretical works on uncovering the inner workings of LMC.

1 Introduction

In recent years, there has been a growing interest in understanding the geometry of loss landscapes,
how modern stochastic first-order gradient-based algorithms navigate them and the relationship
between different optima. There is a large body of work on the mode-connectivity (MC) [10, 7, 2],
linear mode-connectivity (LMC) [9], permutation invariance [8, 1, 3, 16] and a broader range of
symmetries [18] of neural networks, showing that loss landscapes are not solely characterized by
high non-convexity and isolated minima but can often contain flat connected regions. A more detailed
account of these works are included in Appendix B.

Crucial to this work, LMC (and the lack of it) has been observed in disparate settings, however its
root causes have not been epistemically investigated. For instance, when it comes to architectural
components, it is well-known that convolution-based architectures lack LMC [9] compared to fully-
connected models even after accounting for permutation invariance [8, 1]. The varying factors
distinguishing these two architectures, locality, weight-sharing, pooling layers, etc., make it hard to
pinpoint the source of disruption for LMC. Furthermore, these architectures are often trained under
different optimization schemes and with different datasets, which are likely to be confounding factors.

In this paper, we systemically isolate some of the causes of LMC. We start from the simplest
connected setting of logistic regression, i.e. linear model with no hidden layers, and gradually
incorporate architectural changes, training techniques, and datasets typically used in modern deep
learning pipelines. We identify the minimal non-linear setting, namely an MLP with one hidden layer
and ReLU activation, where LMC can be robustly observed over different optimization schemes and
datasets. We then analyze which components break LMC, in particular we study:

• The effect of the model architecture by introducing locality, weight-sharing, and sparsity to
the hidden layer. This way, we recover locally connected, convolutional, and attention-based
models that have a correspondence with the minimal model. Our experiments suggest that
while locality preserves LMC, weight-sharing breaks it.

• Optimization algorithm and training strategy. We show that ADAM breaks connectivity
more than SGD, while it can be recovered by modifying learning rate and adding warm-up.
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• How dataset complexity affects LMC by training MLPs with increasing dataset complexity,
namely MNIST, CiFAR-10, CiFAR-100 and TinyImageNet. We observe that LMC can be
more easily broken under more complex datasets.

2 Background

We consider the classification problem for a general L-layer model with σ activation trained with the
cross entropy loss, whose intermediate output at layer l < L is given by:

zl := fl(x; θl) = σ(Wlzl−1 + bl)

and the final output is ŷ := WLzL−1 + bL. When L = 1 we recover logistic regression, and if σ is
the identity function we have an L-layer linear model. All models in the rest of the text are trained
for 200 epochs and non-linear models reach ∼ 0 training loss.

Linear Interpolation: For two networks A and B with parameters ΘA and ΘB , their linear
interpolation is defined with respect to the convex combination of the parameters at each layer, i.e.
Θ(α) := {(1− α)WAi + αWBi , (1− α)bAi + αbBi}i:1→L.

Error Barrier: We are interested in how the error evolves along the linear path between two models
A,B, where ΘB := ΘA, during training. Do they stay linearly mode-connected even though they
are trained separately, i.e. with different SGD noise (data orderings and augmentation). We base our
measure of connectivity on [9]’s definition of the error barrier (Equation 1).

B = sup
α

E(f(·; Θ(α)))− 1

2
(E(f(·; ΘA)) + E(f(·; ΘB))) (1)

The error is quantified as the ratio of incorrect predictions, represented as E(·) := (1 −
Acc(·)), Acc(·) ∈ [0, 1]. While the current barrier definition offers an absolute measure, it doesn’t
differentiate the extent of performance loss, which is the primary focus of LMC research, across
various levels of task complexity. Hence, we propose to use a normalized version that accounts for
test accuracy when comparing the same architecture on different datasets.

B̄ =
B

1
2 (Accte(f(·; ΘA)) + Accte(f(·; ΘB)))

(2)

We follow the convention in the literature and evaluate Θ(α) at T equidistant values of α between
0 and 1. T is set to 11, i.e. the model is evaluated at α ∈ {0, 0.1, . . . , 1}. We refer to a model as
linearly mode-connected if two independent runs of SGD starting from the same random initialization
exhibit low barrier, e.g. < (0.02).

Table 1: Summary of training and testing error barriers in percentage (100 · B) for an L-layer linear
model across various optimization schemes (optimizer/learning rate/batch size(BS)). Each model
reaches train cross entropy between 0.2 and 0.3 and above 90% test accuracy except for the high
learning rate regime noted with ∗, where the training is unstable.

SGD ADAM
High Lr (0.1) Med Lr (0.01) High Lr (0.005) Med Lr (0.001)
Test Train Test Train Test Train Test Train

1-Layer, BS=30K 0.05 0.01 0.00 0.00 0.03 0.00 0.01 0.01
1-Layer, BS=1024 0.06 0.04 0.06 0.00 0.12 0.07 0.08 0.05
2-Layer, BS=30K 0.01 0.01 0.00 0.00 0.11 0.14 0.05 0.01
2-Layer, BS=1024 0.01 0.14 0.05 0.09 1.30 1.45 0.18 0.16
4-Layer, BS=1024 0.06 0.06 0.02 0.01 47.74 48.91 0.07 0.14
8-Layer, BS=1024 ∗ ∗ 0.06 0.00 68.22 68.87 73.78 74.32
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3 Finding a minimal model

Logistic regression: The simplest model is given by logistic regression, i.e. a linear model with
no hidden layers. We are interested in studying LMC as the complexity of the underlying setting
increases, thus logistic regression is an intuitive starting point. Since it is a convex problem, we
expect it to satisfy LMC (even for different initializations). We show the results in the first row of
Table 1. We indeed confirm this empirically, as the model remains connected for all datasets, batch
sizes and optimizers.

Linear networks: Next, we study how the dynamics change when more layers are added while
keeping the network linear. We show the analogous results for several depths L ∈ {2, 4, 8} in Table 1.
Surprisingly, we observe that for SGD with momentum, linear networks remain very connected even
up to 8 layers. ADAM on the other hand quickly breaks connectivity even for shallower networks.
We attribute the difference to ADAM’s adaptivity. This already hints at a re-occurring theme in this
work; for all the considered settings, ADAM tends to amplify the resulting barriers.

Non-linear networks: We now consider the role of the non-linearity. Since ADAM already breaks
connectivity even for the linear setting, we focus on SGD in order to avoid confounding. We gradually
turn the network non-linear by taking Leaky-ReLU with various slopes ranging from 1 (linear) to
0 (ReLU). We display connectivity as a function of the slope in Figure 1 for MLPs of different
depths. Non-linearity coupled with larger depth enlargens the barriers, even for SGD with momentum,
highlighting that non-linearity has a detrimental effect on connectivity. The 1 hidden layer case
however remains surprisingly robust in terms of connectivity.

Minimal model: Given its strong connectivity values and non-trivial nature, we will adopt the 1
hidden-layer ReLU MLP trained with SGD as our minimal model which still exhibits LMC. We will
show in the following, how various interventions such as optimizer choice, architectural changes as
well the dataset can affect LMC. This gives us a clean minimal setting to disentangle different effects.
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1Figure 1: Barrier with respect to the negative slope p of the Leaky ReLU for p ∈
{0, 0.01, 0.1, 0.2, . . . 0.9, 0.99}. It is equivalent to ReLU for p = 0 and Identity for p = 1.

4 Interventions to minimal model

Training Strategy: Table 1 already suggests that the optimization algorithm plays an important
role in connectivity. We attempt to decouple its effect further over three dimensions: (1) Choice
of the algorithm: SGD or ADAM (2), Learning Rate: High (0.005 for ADAM and 0.1 for SGD)
denoted by ↑, and Medium (0.001 for ADAM and 0.01 for SGD), denoted by ↓ and (3) Warmup:
either no warmup or linear warmup for 10 epochs, i.e. 5% of total training time. We display the
resulting connectivity values when varying the minimal model along the outlined factors in Table 2.
We again observe a very similar pattern; Switching to the ADAM optimizer results in a significantly
less connected model. Using warm-up on the other hand leads to a significant reduction in barrier,
suggesting that LMC is determined early in the training.

Architecture: We now explore the role of the layer-type in the 1-hidden layer model. We are
especially interested in how locality and weight-sharing affect LMC in this simple model. Let us
denote the underlying weight matrix by W ∈ Rm×d where d is the input dimension and m the
number of hidden units.
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Table 2: Error barriers presented in percentage when changing the optimization setup for the minimal
model, MLP with one hidden layer and ReLU activation.

SGD ↑ Lr SGD ↑ Lr W-up ADAM ↓ Lr ADAM ↑ Lr ADAM ↑ Lr + W-up

%Btrain 0.00 0.00 0.00 2.92 0.17
%Btest 0.05 0.02 0.06 2.86 0.23
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Figure 2: Error barriers when
varying the hidden layer. Note
that previous SGD learning rates
were too high for the ViT, hence
we introduce the Low-Lr of 0.001
where ViTs are also connected

It is simple to show that a locally-connected CNN (exhibiting
locality) and a CNN (exhibiting both locality and weight-sharing)
can be obtained by imposing sparsity on W and tying its param-
eters correctly (see Appendix D for details). Using this corre-
spondence between MLP, LC-CNN and CNN we can understand
the effect of these structural choices in a controlled manner. For
completeness, we also experiment with using a single attention
layer. While in this case we do not have a direct correspondence,
attention still offers both locality and weight-sharing. We show
the effects of such architectural changes in Figure 2. We observe
that the LC-CNN remains very connected but both the CNN and
attention-based model experience a decay in connectivity. These
results suggest that weight-sharing might play a more important
role for connectivity than previously appreciated.

Role of dataset: So far, we focused on the MNIST dataset.
We now investigate how increasing task complexity affects LMC
for our minimal model. To account for the performance gap
we use the normalized performance-aware barrier (Equation 2).
We elaborate on the different task complexities in Appendix E. In Figure 3, we observe that task
complexity hinders LMC when accounted for the overall performance. The more complex the dataset,
the larger the barrier and the difference between the training and test barriers.
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Figure 3: Effect of dataset complexity on LMC on an L-layer MLP. Note that to account for the task
complexity we compare LMC using the normalized performance-aware barrier (Equation 2).

5 Discussion

In this work, we examined how each individual component, training strategy, architecture and dataset
impact LMC of two networks that are trained from the same initialization with different SGD noise.
We identified a minimal but non-trivial model amenable to theoretical analysis which show-cases
precisely how several factors such as (1) optimization setup, (2) architectural design ,and (3) dataset
choice influence connectivity. We believe that our results can serve as a guide for theoretical progress
in this topic, equipping the theorist with a model that is very simple but at the same time very rich in
phenomenology. We thus hope that future work can build upon our empirical findings.
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Appendix

A Reproducibility Statement

We used the FFCV-SSL package by [4] built on [12]’s FFCV package to ensure full reproducibility
in terms of the SGD noise, see subsection A.1 for more details.

A.1 Data Loader Reproducibility

The data ordering affects stochastic gradient based methods and hence connectivity. To ensure our
runs can be reproduced we pick a trainer seed for initialization, data loader seed that determines
ordering and an augmentation seed used for random augmentations. We include two sample CIFAR-
10 data loaders in Figure 4.

Figure 4: Each data loader is initialized three times with loader seed (used for data ordering) and data
augmentation seed (used for random augmentations) set to 43 (top) and 118 (bottom). Augmentations
used: random translate and horizontal flip

B Related Work

This appendix provides a brief overview of the relevant literature.

Mode-Connectivity: [10, 7] demonstrated that optima trained from different initializations can be
connected with simple parametric curves, e.g., polygonal chains or Bezier curves, without incurring
a significant increase in the loss along this path. [2] showed that these paths can be extended to
probabilistic volumes of low loss. [16] formalized these volumes for over-parameterized two-layer
networks as the Global Minima Manifold and provided explicit descriptions of its dimensions. [17]
analyzed the optimization trajectory on the loss landscape by linearly interpolating between the initial
and final training weights.

Linear Mode-Connectivity: A parallel line of work, explore linear mode-connectivity (LMC),
where a linear path of near-constant error exists between the two optima. [9] show that two fully-
connected networks trained from the same initialization but with different SGD noise, i.e. data order
and augmentations, are stable to the noise and converge to linearly connected minima. Their results
extend to more complex vision algorithms as well if the two networks are trained with the same
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SGD noise for a while and then spawned. More recently [19] coined Layerwise Linear Feature
Connectivity (LLFC), a stronger setting where the feature maps of every layer also exhibit LMC.
[11, 15, 13] study generalization in transfer learning through LMC.

Permutation Invariance: The permutation symmetry of the hidden neurons and how the learned
parameters interact with each other after accounting for the permutation has also emerged as a notable
avenue of inquiry. [8]’s initial conjecture argued that in most cases SGD converges to the same
basin up-to permutation and showed the emergence of LMC for wide and shallow architectures after
accounting for the permutation invariance. [1] proposed a general weight matching algorithm to
align models trained from different initializations that supported [8]’s conjecture on ResNets as well.
[3] show that two models exhibit linear mode-connectivity at initialization when merged with the
permutation found later in training.

C Further Training Strategies

This appendix presents some ablation studies regarding the training techniques and optimization.

Although we examined the effect of other regularization techniques, our preliminary experiments
proved these three dimensions, optimizer, learning rate, and warm-up, to be the most important for
LMC across different architectures. For example, varying the batch size, turning off momentum,
adding a weight decay term or cosine learning rate scheduler doesn’t have a significant impact on the
behavior of the previous settings. We found that gradient clipping can also be used to preserve LMC.

C.1 ADAM on MLPs

Since ADAM already breaks LMC in deeper linear models, we find it trivial that it also doesn’t
preserve LMC in MLPs. Still, for completeness we provide the performance-aware barrier for MNIST
and CiFAR-10 in Figure 5.
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Figure 5: Task barrier for MLPs trained with ADAM on MNIST (left) and CiFAR-10 (right)

D Architectural Correspondence

Similar to [14], we study shallow convolutions and establish their MLP counterpart based on the
Toeplitz representation of the underlying convolutional layer. For simplicity, we set stride equal to the
kernel size and do not use 0-padding. A convolutional layer operating on a Ci ×H ×W input with
kernel size (k1, k2) and Co filters has Co×Ci×k1×k2 parameters. Its locally connected counterpart
uses different kernels to compute each target pixel, hence it has Co×H ′ ×W ′ × Ci × k1 × k2
parameters, where H ′,W ′ is the output spatial dimension of the resulting feature map. Both of them
can be embedded in a Co ·H ′ ·W ′ × Ci ·H ·W linear layer. Table 3 shows the total number of
parameters for a 2-Layer network, where the first layer is either a convolution, locally connected
or linear layer whose weights can be represented with the same Toeplitz matrix. Note that ViTs [6]
could also be considered in this framework thanks to [5], however we leave it to future work to study
the exact correspondence.

ViT-like MLP To study the effect of attention on LMC, we consider the simplest setting of a
ViT. We don’t modify the patch embeddings, normalizations and the classifier layer but simplify the
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Table 3: Parameter Count (M) for a 2-Layer Network where the first layer is either a CNN/LC-
CNN/Linear equivalent to kernel size=4, padding=0

CNN 0.09
LC-CNN 0.48
MLP 25.26

encoder. We remove skip connections and the MLP part (last two linear layers) from the transformer
encoder block and only use one block. We use patch size of 4 to establish similarity to the (LC)-CNN
case. 8 heads each of dimension 48. The resulting architecture has approximately 1.08M parameters.

E Data

In Figure 3, we gradually increase the complexity of the task by changing the dataset:

1. MNIST → CiFAR-10 input dimensions (both spatial and number of channels) increase from
(28, 28, 1) to (32, 32, 3) while keeping the number of target labels the same. These two
datasets also have similar number of samples (60,000 and 50,000).

2. CiFAR-10 → CiFAR-100 number of samples and image resolution stay constant while the
number of labels increase by a factor of 10, from 10 to 100.

3. CiFAR-100 → Tiny-ImageNet image resolution, number of labels and number of samples
double.

We limit this analysis to 2-4-8-Layer MLPs trained using SGD with momentum with high (0.1)
or medium (0.01) learning rate. Since we are interested in the most simple settings, we don’t use
any data augmentation, which hurts generalization. Moreover, MLPs are known for their subpar
performance on large scale image classification tasks. See Table 4 for a comparison of the test
accuracies across these four datasets. We propose Equation 2 to account for this performance gap.
This modification allows us to view error barrier as a ratio of the lost performance.

Table 4: Test accuracies (%) reached on varying datasets by L-Layer MLPs trained using SGD with
high (0.1) or medium (0.01)

2-Layer 4-Layer 8-Layer

High Med High Med High Med
MNIST 98.32 98.34 98.41 98.19 98.41 97.14
CiFAR-10 * 54.24 58.75 55.51 57.44 54.45
CiFAR-100 * 26.01 14.26 27.16 25.33 20.30
TinyImageNet * 7.62 1.68 8.27 5.80 5.79
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